pH-sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells.

نویسندگان

  • Yu-San Liu
  • Yinghua Sun
  • P Thomas Vernier
  • Chi-Hui Liang
  • Suet Ying Christin Chong
  • Martin A Gundersen
چکیده

The photoluminescence of mercaptoacetic acid (MAA)-capped CdSe/ZnSe/ZnS semiconductor nanocrystal quantum dots (QDs) in SKOV-3 human ovarian cancer cells is pH-dependent, suggesting applications in which QDs serve as intracellular pH sensors. In both fixed and living cells the fluorescence intensity of intracellular MAA-capped QDs (MAA QDs) increases monotonically with increasing pH. The electrophoretic mobility of MAA QDs also increases with pH, indicating an association between surface charging and fluorescence emission. MAA dissociates from the ZnS outer shell at low pH, resulting in aggregation and loss of solubility, and this may also contribute to the MAA QD fluorescence changes observed in the intracellular environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice

Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...

متن کامل

Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications

We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs) overcoated with Cd(0.5)Zn(0.5)S/ZnS multishells. The as-prepared QDs exhibited narrow photoluminescence bandwidth as the consequence of homogeneous size distribution and uniform crystallinity, which was confirmed by transmission electron microscopy. A high photoluminescence q...

متن کامل

Synthesis of Reabsorption-Suppressed Type-II/Type-I ZnSe/CdS/ZnS Core/Shell Quantum Dots and Their Application for Immunosorbent Assay

We report a phosphine-free one-pot method to synthesize ZnSe/CdS/ZnS core-shell quantum dots (QDs) with composite type-II/type-I structures and consequent reabsorption suppression properties. The as-synthesized QDs possess high efficient red emission (with quantum yield of 82%) and high optical stability. Compared to type-I QDs, the ZnSe/CdS/ZnS QDs show larger Stokes shift and lower reabsorpti...

متن کامل

Comparison of Toxicity of CdSe: ZnS Quantum Dots on Male Reproductive System in Different Stages of Development in Mice

Background Quantum dots (QDs) are new types of fluorescent materials for biological labeling. QDs toxicity study is an essential requirement for future clinical applications. Therefore, this study aimed to evaluate cytotoxic effects of CdSe: ZnS QDs on male reproductive system. MaterialsAndMethods In this experimental study, the different concentrations of CdSe: ZnS QDs (10, 20 and 40 mg/kg) we...

متن کامل

A comparative study about toxicity of CdSe quantum dots on reproductive system development of mice and controlling this toxicity by ZnS coverage

Objective(s):  Medicinal benefits of quantum dots have been proved in recent years but there is little known about their toxicity especially in vivo toxicity. In order to use quantum dots in medical applications, studies ontheir in vivo toxicity is important.  Materials and Methods:CdSe:ZnS quantum dots were injected in 10, 20, and 40 mg/kg doses to male mice10 days later, mice were sacrificed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. C, Nanomaterials and interfaces

دوره 111 7  شماره 

صفحات  -

تاریخ انتشار 2007